The Economist making a mess of ‘coronavirus tracking’ – Ignoring Strategy?

2 february 2023 – daily check

source: Tracking the coronavirus across Europe

https://www.economist.com/graphic-detail/tracking-coronavirus-across-europe

Screenshots:

screenshots, above: dec. 7th 2022 , below dec. 14th 2022

screenshots: 4/12/22, 12/12, 18/12, 22/12, 27/12, 30/12… continuing

The Economist – A still life of the coronavirus in Europe

source: Tracking the coronavirus across Europe, 1/12/2021

https://www.economist.com/graphic-detail/tracking-coronavirus-across-europe

A still life: Graphs (New > Old)

Tweets referring to the still life (New > Old)

https://mobile.twitter.com/tijdvooreten/status/1498734169458892810

LinkedIn

https://www.linkedin.com/feed/update/urn:li:activity:7003432505533964288

Twitter referring to url

https://mobile.twitter.com/jamesfransham/status/1307680756312027136

Excess mortality NL: Dutch Data?

261 views

update 18 november – Samenvatting

Wat is er gebeurd met de nederlandse oversterfte cijfers van 2022 in de internationale bronnen?

Uitgangspunt zijn de cijfers van het CBS. Zoals al eerder werd opgemerkt, is er iets vreemds aan de hand met de cijfers van Nederland vanaf 2022 in de wereldwijd toonaangevend bronnen The Economist en Ourworldindata (zie grafiek gepubliceerd op 6 nov.). In eerste instantie betreft het een analyse van Ourworldindata, de excess mortality percentages. Een verzoek aan Ourworldindata om opheldering brengt ons niet verder (zie email). Er is contact gezocht met de World Mortality Dataset.

Een nadere analyse van de cijfers van The Economist brengt het volgende aan het licht.

Uitkomst vergelijking The Economist met CBS op vier tijdvlakken 2020-2022

Vergeleken zijn de cijfers van vier perioden van 5 aaneengesloten weken. De vier perioden zijn: A) start pandemie (weken 11 t/m 15 2020); B) een jaar later (weken 10 t/m 14 2021); C) de laatste maand 2021: internationale oversterftepiek NL (weken 48 t/m 52 2021); D) het begin 2022, direct aansluitend op C) (weken 1 t/m 5 2022).

Resultaat

A) verschil in oversterfte tussen The Economist en CBS: 3% (6020 om 5845 doden), aantal doden exact hetzelfde, aantal verwachte doden verschil van 1%;

B) verschil in oversterfte tussen The Economist en CBS: -100 doden (klein getal), aantal doden exact hetzelfde; 

C) verschil in oversterfte tussen The Economist en CBS: 4% (4782 om 4595 doden), aantal doden verschil : 0,5%, aantal verwachte doden verschil van 2%;

D) verschil in oversterfte tussen The Economist en CBS 90% (-1308 ondersterfte versus -688 ondersterfte), aantal doden verschil van 4,5%. 

Tot en met het eind van 2021 lopen de cijfers van The Economist in pas met het CBS. Vanaf 2022 zijn de wekelijkse verschillen tussen The Economist en het CBS opeens systematisch heel groot, statistisch onmogelijk?! Doortellend t/m 2 oktober 2022 (week 39) komt The Economist op een absolute oversterfte van 3.355 doden in 2022, terwijl het CBS op 7.338 komt, meer dan 2 x zoveel (219%)?! (zie tabel, rechts)

NB: De verschillen tussen het CBS en Ourworldindata zijn in 2022 nog veel groter! Gevisualiseerd, is dit wat er gebeurd is met de weergave van de nederlandse cijfers (CBS):


(oudere tekst)

Opmerkelijk feit: de onverklaarde veranderingen van de Dutch Data hebben betrekking op 2022 en gaan niet verder terug in de tijd. NB: het betreft dezelfde tijdspan/periode als die van de EXCESS MORTALITY RANKING 2022 EU14. https://gijsvanloef.nl/2022/07/08/op-zoek-naar-een-goede-oversterfte-ranglijst/

(o.b.v. een visuele vergelijking van de grafieken; boven: screenshot 22/7/’22, onder: screenshot 8/11/’22)

update 6 november – vier versies NL-data in een grafiek

Bij analyse van de excess mortality data van The Economist zien we dat de cijfers (per week, per land) systematisch hoger zijn dan bij ourworldindata. O.b.v. een aantal landen kom ik tot een verschil van factor 1,15 tot 1,38 hoger bij The Economist. Maar bij Nederland is het beeld compleet afwijkend.

Hier de vier versies van Nederland: 2 versies ourworldindata (data 28/10, data 21/10), de CBS-versie en de The Economist-versie. NB De CBS-versie (paarse lijn) ligt het hoogste, daaronder de oude versie van ourworldindata die de CBS-grafiek regelmatig raakt. Daaronder (okergele lijn) de The Economist versie en onderaan de nieuwe ourworldindata-versie (grijze lijn). NB Bij de andere landen (EU14) is er vrijwel geen waarneembaar verschil tussen de verschillende ourworldindata-versies en dat is logisch (28/10 versus 21/10).

update 4 november – Grafiek NL-data op ourworldindata oude versie (1) en nieuwe versie (2).

Wetende, dat er altijd correcties van sterftecijfers achteraf zijn bij elk land (met de UK als toonbeeld van voorspelbaarheid, systematisch minimale correcties met terugwerkende kracht en Italie als notoire ‘achterloper’ van recente data), correcties die varieren en kleiner worden naarmate het langer geleden is, is het vaste patroon van de plotsklapse wijziging van de Nederlandse data die helemaal terug gaat naar week 1/22 hoogst opmerkelijk. Het klopt niet. Het kan gewoon niet. Ergens in dit dataproces is gerommeld. (met de brongegevens van het CBS)

Grafiek NL-data op ourworldindata. Bovenste lijn: oude versie (1) en nieuwe versie daaronder (2). NB Het verschil is een factor 3,5 in procentpunten. Y-as: % over/ondersterfte. X-as: de weken in 2022. De oude versie ligt op het nivo van het CBS.

update 3 november – antwoord van dhr. Ruben van Gaalen, waarvoor dank.

De vraag blijft: Hoe is het mogelijk dat op ourworldindata de nederlandse oversterfte opeens met een factor 3,5 is gedaald?! Ook op The Economist zijn de nederlandse sterftecijfers veel lager dan die van het CBS, maar weer niet zo laag als bij ourworldindata.

The Economist – Met enig nattevingerwerk kom ik uit op 41% lager. En waarom zijn alle weekcijfers (zowel het aantal doden, als het verwacht aantal doden) anders dan bij het CBS?

Wat is er hier toch aan de hand, wie kan deze enorme verschillen verklaren?

2 november 2022 –

In de laatste internationale statistieken van de excess mortality zien we een hoogst opmerkelijke wijziging van de Nederlandse cijfers (ourworldindata.org; economist e.d.). Het zou erop neerkomen dat de oversterfte op jaarbasis in een klap met een factor 3,5 kleiner wordt. Dat is natuurlijk niet waar. Maar hoe komt dit?

De nederlandse cijfers zijn opeens vanaf week 1 2022 zeer sterk verlaagd. Tot en met de laatste meting (week 39, de laatste week die vergeleken kan worden) zijn de oversterfte percentages van Nederland 3,5 keer kleiner geworden, rekenkundig een verlaging van 100% (oude totaal=100%) naar 28,93% (nieuwe totaal). Bij alle landen zijn de verschillen tussen beide lijsten, verschillen die het gevolg zijn van normale mutaties achteraf die bij alle landen voorkomen, kleiner dan 5% (4 landen rond de 4% a 5%: Duitsland, Spanje, Italie, Zwitserland), bij 9 van de 14 landen is het verschil kleiner dan circa 1,5%, waarvan bij 7 landen de verschillen volstrekt minimaal zijn.

Meestal zijn dit zgn. ‘plusmutaties’, omdat niet alle sterfgevallen direct worden geregistreerd/aangemeld. Zie bij ons de verschillen tussen de GGD’en, het RIVM en het CBS, waar anderen uitgebreid aandacht aan besteden.

Op de EXCESS MORTALITY RANKING 2022 EU14 zou Nederland plotsklaps het land zijn met de laagste oversterfte in 2022 (!!). NB Fictief voorbeeld.

Zie verder:

https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker

COVID-19 Data Explorer van http://www.ourworldindata.org, selecteer EU14-landen ‘excess mortality’ & ‘weekly’

Belangrijkste publicaties (5 jaar onafhankelijk onderzoek en advies over het zorgstelsel)

Top 5 publicaties

Platform Betrouwbare Zorgcijfers (co-auteur John J.L. Jacobs):
Corona scenario analyse 14 maart 2020

Volkskrant: Waarom zorg in Nederland juist níét tot de beste hoort

Medisch Contact:
Nederlandse zorg valt van haar voetstuk

ESB (co-auteur Renske Leijten): Zorgstelsel obv samenwerking stelt
patiënt centraal

Skipr: Een patiëntgeoriënteerd zorgstelsel

Recensies

Voxmedia: Voxmedia“The Netherlands has universal health insurance — and it’s all private”

Stichting Beroepseer: Beroepseer Gijs van Loef bekritiseert de effecten van marktwerking in de zorg op basis van onderzoek naar kwaliteit van zorg

Corona Dashboard EW16/W36

Last update 5 august 2020

Corona Dashboard EW16/W36 (closed)

John Jacobs & Gijs van Loef

Data 04 08 2020

Mortality per million population allows comparison between countries. Major differences are caused by differences in anti-epidemic strategy, which may be affected by the preparedness of countries to the epidemic.

General remarks by making a comparison between countries
We would like to make two important notes.
1. Countries differ in the way the count their mortality rates. The Dutch regional GGD stated early in the epidemic that the national RIVM did not count all cases, i.e. the Netherlands have relevant under reporting of cases.[1] People dying in nursing homes are rarely counted, since these patients will not be tested, even when suffering from COVID-19 symptoms. The Dutch statistics do not count untested people as COVID-19 victims. The data can be corrected for excess mortality. Because the data on excess mortality is delayed for about three weeks, a fixed correction factor is applied.[2]

2. Populations differ in age distribution, and old people have higher mortality rates due to COVID-19.
Using the double-corrected data, a ranking is made from dark red to dark green. The current ranking is (Table 1):
Dark red:> 1000 deaths per million population (> 1000 deaths / M). Ecuador, Peru, United Kingdom, Chile
Medium red: 500-1000 deaths / M. Belgium, Brazil, Italy, Spain, Netherlands, USA, Sweden
Light red: 200-500 deaths / M. France, Ireland, Switzerland, Portugal, Canada, South Africa
Ocher yellow: 100-200 deaths / M. Austria, Denmark, Germany
Yellow. 50-100 deaths / M. Finland, Norway, Israel
Light green: 20-50 deaths / M. Estonia, Czech Republic, Poland, Lithuania, Iceland, India
Medium green: 10-20 deaths / M. Greece, Australia
Dark green: <10 deaths / M. South Korea, Singapore, New Zealand, Japan, Taiwan, Hong Kong, Vietnam

Table 1. Overview of mortality per million people (mortality/M), the raw data, corrected for underreporting [a] and age. Data to determine under reporting is derived from various sources.[b]

[a] https://hartblik.weebly.com/beter-c-verschillende-strategieeumln.html
[b] https://www.economist.com/graphic-detail/2020/04/16/tracking-covid-19-excess-deaths-across-countries , https://www.economist.com/europe/2020/05/09/many-covid-deaths-in-care-homes-are-unrecorded , https://www.ft.com/content/6bd88b7d-3386-4543-b2e9-0d5c6fac846c , https://www.washingtonpost.com/investigations/2020/04/27/covid-19-death-toll-undercounted/?arc404=true

It is striking that the best-performing countries are located near Southeast Asia, where the SARS-1 epidemic started in China 18 years ago. Many countries learned from this epidemic and were prepared for a new epidemic[3] Every virologist could have predicted that a new epidemic would come, as I (i.e. John Jacobs) did in 2003.[4]
Controlling a virus epidemic requires a different strategy than a bacterial epidemic. The default anti-virus strategy is testing, proactively detecting and isolation of infected cases.[5] To do this correctly is double efficient: lower disease mortality rates, and less social and economic damage, as only infected cases should be isolated. It is also widely practiced in case of veterinary epidemics.[6]

The policies of European and North American countries had weak to poor antivirus policy results.
Mortality is higher, sometimes up to 100 times higher than in Asian and Australian countries.
The impact on social well-being and the economy is much greater.
The differences within Europe are also huge when Greece and Lithuania are compared to the United Kingdom and Belgium.

We should learn from this epidemic.
It is very doubtful if we will develop a good and safe vaccine soon, since, vaccination is a hard strategy when antivirus immune responses contribute to mortality. It could be that antibody-mediated immune responses are the cause of mortality.[7] In most European countries only about 5% of the people were infected, so this epidemic could continue to spread for a considerable time with the potential to cause high mortality rates.[8] The need to learn and act from the learnt lessons from this epidemic is paramount.
New virus epidemics will come. Just like the prediction of this epidemic decades ago, we know that a new RNA virus epidemic will arise after AIDS, SARS-1, MERS, Ebola and SARS-2.
Our epidemic policy has a major impact on human behaviour and thus on the virus epidemic.[9] If we are prepared [10], the impact could be similar to the South East Asian and Australian countries that prepared themselves after SARS-1.

[1] RIVM is national institute for health and environment. https://hartblik.weebly.com/addendum-correctie.html
[2] https://hartblik.weebly.com/beter-c-verschillende-strategieeumln.html
[3] https://hartblik.weebly.com/voorkom-epidemie.html
[4] https://hartblik.weebly.com/ontsnappende-virussen.html
[5] https://hartblik.weebly.com/fighting-covid19.html
[6] https://hartblik.weebly.com/betere-bestrijding-van-de-epidemie.html
[7] https://hartblik.weebly.com/foute-afweer.html
[8] https://hartblik.weebly.com/beter-a-impact-covid-19.html
[9] https://hartblik.weebly.com/cijfers-en-data.html
[10] https://hartblik.weebly.com/verloren-door-te-weinig-kennis.html

Raw numbers
The Corona Dashboard 1.0 was launched in Dutch at 18th of April 2020 on our websites. It focused at the EW16, 16 ‘modern’ European countries with a population of at least 4 million people. These countries share political, democratic, social economic and technological development, making them excellent for internal comparison. The list consists of Austria, Belgium, Denmark, Germany, Finland, France, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Japan, Republic of Korea (South) and the USA are added to complete the list, therefore EW16+3.

Table 2. Raw data from worldometer from EW16+3 [1]
[1] https://www.worldometers.info/coronavirus/

Reported mortality rates
The 16 European countries have huge differences in the mortality rates they report. Remarkably, the epidemic in Spain is the first one to have higher numbers of mortality, even before Italy. In Belgium the epidemic raised to the highest (uncorrected level), before being stopped (at about 6%) by the national policy.



Figure 1. Mortality rates for EW16+3. Above: linear, below: logaritmic
Country codes are explained in Table 1.

Case mortality rates
Case mortality rates show the differences of cases per country. Age corrections is shown to compensate for differences in population distribution. France has corrected its data of the number of cases on june 3d.
Table 3. Case-mortality rates.
Number of critically ill and recovered persons. The lack of data on how many people have recovered, shows the limitations of the care registration systems in the Netherlands, the United Kingdom, Sweden and Spain.

Link between testing and mortality EW16+3
Flu-like symptoms are no evidence for COVID-19, and not everyone infected by SARS-2 will develop symptoms. Policy making on symptoms fails because it discriminates poorly and would have people repeatedly in quarantine due to colds or other respiratory complaints. People succumbing to COVID-19 usually don’t go to many places anymore. Infected people are contagious before they get sick, and not everyone will develop symptoms. The high number of sick people in the Netherlands is partly related to many infected people continuing to spread the disease unmonitored, some even working in care facilities.

Proactive testing starts with testing everyone that has symptoms. If someone test positively, all the contacts will be tested. All contacts who are negative will be retested after 1 and 2 weeks. All infected people will remain in isolation – e.g. in their own house or in special hotels. In Wuhan, the government delivered groceries at their homes, to avoid the need of going outside.

An active testing policy will test many people who are not infected, because the infection rate in the population is usually (far) below 2%. Passive testing leads to a much higher number of infections per test. The danger of passive testing is that many infected people are hidden in the population. It is estimated worldwide half of the infections are caused by people without symptoms. These infections mainly occur in countries that do not test enough. People without symptoms and without a test result have no urgent reason to isolate themselves from social activities or go for  quarantine. Figure 2 shows the statistical relationship between the maximum percentage of positive tests in a country and the mortality rate in the population from COVID-19. Corrected data yield similar results.


Figure 2. Relation between mortality rate and lack of proactive policy, uncorrected data.
The shape of countries corresponds to their continent (circle Europe (EW-16), square other Europe, cross North America, triangle: Australia, diamond: Southeast Asia). Clear correlation. For reference R^2> 0.5 is considered a very clear connection in this domain. Country codes are explained in Table 1.
[1] https://hartblik.weebly.com/dashboard-i.html

Current status EW16+3

The current status shows how the epidemic develops in various countries. Many European countries have experienced a nonspecific lockdown to defeat the virus’ first wave that has paused the epidemic. This required more time in countries that have had a high peak, such as Belgium (Figure 3). The epidemic seems to be in control in all visualized countries, except for UK, Sweden and USA. Most countries have ended the lockdown. This could reactivate the epidemic. (In specific area’s (regions within countries) the virus is resurrecting and regional lockdowns are the governmental response.) The start of the epidemic is less noticeable in a cumulative graph than in a daily graph. Due to daily fluctuations, the data in Figure 3 is averaged over several days.


Figure 3. Daily mortality rates for 16 European countries + 3.
Moving average over 3 to 5 (and 7 if missing today) filtered for negative values and extreme high values (often data corrections). Country codes are explained in Table 1.

Figure 3A. Zooms in on the most recent dates of Figure 3.

John Jacobs & Gijs van Loef
hartblik.weebly.com corona dashboard

 

Dutch version, including remarks from healthcare experts: Corona Dashboard Dutch version EW16/W28