Aan de Kamercommissie VWS: Corona beleidsadvies van een groep experts

update 2 juli – Het RIVM heeft de pagina met de drie scenario’s verwijderd. Ons advies begint met een kritiek hierop.

verwijderde webpagina RIVM na publicatie

Aanpak coronacrisis onder de loep

Geachte leden van de kamercommissie Volksgezondheid, Welzijn en Sport,
Het is goed dat de Tweede Kamer een onafhankelijk onderzoek instelt naar de maatregelen om de coronacrisis te bestrijden. Het Corona Dashboard van Platform Betrouwbare zorgcijfers ( corona dashboard EW16/W36 en hartblik.nl/corona dashboard) laat zien dat Nederland bij de landen behoort met hoge sterftecijfers.
Op verzoek van het Platform Betrouwbare zorgcijfers heeft een groep van experts een advies opgesteld van 10 punten over de verdere aanpak van de bestrijding van het coronavirus.
Met genoegen bieden wij uw commissie dit hierbij aan.

28 juni 2020

• Inmiddels zijn 6.074 mensen overleden met diagnose SARS-2. De oversterfte in Nederland is 9.800 mensen. Als de cijfers van oversterfte omgerekend worden naar 60% immuniteit kost dat 107.000 levens (60/5,5*9.800).
• Meer dan honderdduizend doden in Nederland vinden wij onaanvaardbaar hoog.

Opstellers
– John J. L. Jacobs, medisch wetenschapper, immunoloog
– Arnold Bosman, arts niet-praktiserend, veld-epidemioloog
– Dick Bijl, epidemioloog
– Matthijs Dekker, huisarts
– Jaap van den Heuvel, bestuursvoorzitter Rode Kruis Ziekenhuis Beverwijk
– Anton Maes, huisarts niet-praktiserend
– Roger Sorel, bestuurder geneesmiddelensector
– Gijs van Loef, bestuurskundig socioloog

Lees hier: Advies aan de Kamer

een initiatief van het Platform Betrouwbare Zorgcijfers

Leden van het Platform Betrouwbare Zorgcijfers Achtergrond leden Platform 23062020

Reacties

– Joost Zwartenkort (MD PhD., KNO-arts otoloog): “Beste Gijs, fantastisch wat je doet met betrouwbare zorgcijfers. Ik hoop dat je volgende missie is om die illusie dat alle uitgestelde zorg zinloze zorg was te ontkrachten. Het zal vast op de lange termijn uit je cijfers blijken.”
– Willem-Hans Steup (MD PhD., Thoracic Lung Surgeon): “Mooi rapport, Gijs. Zeker nuttig.”
– Wim Schellekens (MD., voormalig Hoofdinspecteur Inspectie voor de Gezondheidszorg IGZ): “Advies aan 2eKamerCie VWS over aanpak Coronacrisis: 10 belangrijke punten die goede aanzet zijn voor grondige discussie!”

Corona Dashboard EW16/W36

Last update 5 august 2020

Corona Dashboard EW16/W36 (closed)

John Jacobs & Gijs van Loef

Data 04 08 2020

Mortality per million population allows comparison between countries. Major differences are caused by differences in anti-epidemic strategy, which may be affected by the preparedness of countries to the epidemic.

General remarks by making a comparison between countries
We would like to make two important notes.
1. Countries differ in the way the count their mortality rates. The Dutch regional GGD stated early in the epidemic that the national RIVM did not count all cases, i.e. the Netherlands have relevant under reporting of cases.[1] People dying in nursing homes are rarely counted, since these patients will not be tested, even when suffering from COVID-19 symptoms. The Dutch statistics do not count untested people as COVID-19 victims. The data can be corrected for excess mortality. Because the data on excess mortality is delayed for about three weeks, a fixed correction factor is applied.[2]

2. Populations differ in age distribution, and old people have higher mortality rates due to COVID-19.
Using the double-corrected data, a ranking is made from dark red to dark green. The current ranking is (Table 1):
Dark red:> 1000 deaths per million population (> 1000 deaths / M). Ecuador, Peru, United Kingdom, Chile
Medium red: 500-1000 deaths / M. Belgium, Brazil, Italy, Spain, Netherlands, USA, Sweden
Light red: 200-500 deaths / M. France, Ireland, Switzerland, Portugal, Canada, South Africa
Ocher yellow: 100-200 deaths / M. Austria, Denmark, Germany
Yellow. 50-100 deaths / M. Finland, Norway, Israel
Light green: 20-50 deaths / M. Estonia, Czech Republic, Poland, Lithuania, Iceland, India
Medium green: 10-20 deaths / M. Greece, Australia
Dark green: <10 deaths / M. South Korea, Singapore, New Zealand, Japan, Taiwan, Hong Kong, Vietnam

Table 1. Overview of mortality per million people (mortality/M), the raw data, corrected for underreporting [a] and age. Data to determine under reporting is derived from various sources.[b]

[a] https://hartblik.weebly.com/beter-c-verschillende-strategieeumln.html
[b] https://www.economist.com/graphic-detail/2020/04/16/tracking-covid-19-excess-deaths-across-countries , https://www.economist.com/europe/2020/05/09/many-covid-deaths-in-care-homes-are-unrecorded , https://www.ft.com/content/6bd88b7d-3386-4543-b2e9-0d5c6fac846c , https://www.washingtonpost.com/investigations/2020/04/27/covid-19-death-toll-undercounted/?arc404=true

It is striking that the best-performing countries are located near Southeast Asia, where the SARS-1 epidemic started in China 18 years ago. Many countries learned from this epidemic and were prepared for a new epidemic[3] Every virologist could have predicted that a new epidemic would come, as I (i.e. John Jacobs) did in 2003.[4]
Controlling a virus epidemic requires a different strategy than a bacterial epidemic. The default anti-virus strategy is testing, proactively detecting and isolation of infected cases.[5] To do this correctly is double efficient: lower disease mortality rates, and less social and economic damage, as only infected cases should be isolated. It is also widely practiced in case of veterinary epidemics.[6]

The policies of European and North American countries had weak to poor antivirus policy results.
Mortality is higher, sometimes up to 100 times higher than in Asian and Australian countries.
The impact on social well-being and the economy is much greater.
The differences within Europe are also huge when Greece and Lithuania are compared to the United Kingdom and Belgium.

We should learn from this epidemic.
It is very doubtful if we will develop a good and safe vaccine soon, since, vaccination is a hard strategy when antivirus immune responses contribute to mortality. It could be that antibody-mediated immune responses are the cause of mortality.[7] In most European countries only about 5% of the people were infected, so this epidemic could continue to spread for a considerable time with the potential to cause high mortality rates.[8] The need to learn and act from the learnt lessons from this epidemic is paramount.
New virus epidemics will come. Just like the prediction of this epidemic decades ago, we know that a new RNA virus epidemic will arise after AIDS, SARS-1, MERS, Ebola and SARS-2.
Our epidemic policy has a major impact on human behaviour and thus on the virus epidemic.[9] If we are prepared [10], the impact could be similar to the South East Asian and Australian countries that prepared themselves after SARS-1.

[1] RIVM is national institute for health and environment. https://hartblik.weebly.com/addendum-correctie.html
[2] https://hartblik.weebly.com/beter-c-verschillende-strategieeumln.html
[3] https://hartblik.weebly.com/voorkom-epidemie.html
[4] https://hartblik.weebly.com/ontsnappende-virussen.html
[5] https://hartblik.weebly.com/fighting-covid19.html
[6] https://hartblik.weebly.com/betere-bestrijding-van-de-epidemie.html
[7] https://hartblik.weebly.com/foute-afweer.html
[8] https://hartblik.weebly.com/beter-a-impact-covid-19.html
[9] https://hartblik.weebly.com/cijfers-en-data.html
[10] https://hartblik.weebly.com/verloren-door-te-weinig-kennis.html

Raw numbers
The Corona Dashboard 1.0 was launched in Dutch at 18th of April 2020 on our websites. It focused at the EW16, 16 ‘modern’ European countries with a population of at least 4 million people. These countries share political, democratic, social economic and technological development, making them excellent for internal comparison. The list consists of Austria, Belgium, Denmark, Germany, Finland, France, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Japan, Republic of Korea (South) and the USA are added to complete the list, therefore EW16+3.

Table 2. Raw data from worldometer from EW16+3 [1]
[1] https://www.worldometers.info/coronavirus/

Reported mortality rates
The 16 European countries have huge differences in the mortality rates they report. Remarkably, the epidemic in Spain is the first one to have higher numbers of mortality, even before Italy. In Belgium the epidemic raised to the highest (uncorrected level), before being stopped (at about 6%) by the national policy.



Figure 1. Mortality rates for EW16+3. Above: linear, below: logaritmic
Country codes are explained in Table 1.

Case mortality rates
Case mortality rates show the differences of cases per country. Age corrections is shown to compensate for differences in population distribution. France has corrected its data of the number of cases on june 3d.
Table 3. Case-mortality rates.
Number of critically ill and recovered persons. The lack of data on how many people have recovered, shows the limitations of the care registration systems in the Netherlands, the United Kingdom, Sweden and Spain.

Link between testing and mortality EW16+3
Flu-like symptoms are no evidence for COVID-19, and not everyone infected by SARS-2 will develop symptoms. Policy making on symptoms fails because it discriminates poorly and would have people repeatedly in quarantine due to colds or other respiratory complaints. People succumbing to COVID-19 usually don’t go to many places anymore. Infected people are contagious before they get sick, and not everyone will develop symptoms. The high number of sick people in the Netherlands is partly related to many infected people continuing to spread the disease unmonitored, some even working in care facilities.

Proactive testing starts with testing everyone that has symptoms. If someone test positively, all the contacts will be tested. All contacts who are negative will be retested after 1 and 2 weeks. All infected people will remain in isolation – e.g. in their own house or in special hotels. In Wuhan, the government delivered groceries at their homes, to avoid the need of going outside.

An active testing policy will test many people who are not infected, because the infection rate in the population is usually (far) below 2%. Passive testing leads to a much higher number of infections per test. The danger of passive testing is that many infected people are hidden in the population. It is estimated worldwide half of the infections are caused by people without symptoms. These infections mainly occur in countries that do not test enough. People without symptoms and without a test result have no urgent reason to isolate themselves from social activities or go for  quarantine. Figure 2 shows the statistical relationship between the maximum percentage of positive tests in a country and the mortality rate in the population from COVID-19. Corrected data yield similar results.


Figure 2. Relation between mortality rate and lack of proactive policy, uncorrected data.
The shape of countries corresponds to their continent (circle Europe (EW-16), square other Europe, cross North America, triangle: Australia, diamond: Southeast Asia). Clear correlation. For reference R^2> 0.5 is considered a very clear connection in this domain. Country codes are explained in Table 1.
[1] https://hartblik.weebly.com/dashboard-i.html

Current status EW16+3

The current status shows how the epidemic develops in various countries. Many European countries have experienced a nonspecific lockdown to defeat the virus’ first wave that has paused the epidemic. This required more time in countries that have had a high peak, such as Belgium (Figure 3). The epidemic seems to be in control in all visualized countries, except for UK, Sweden and USA. Most countries have ended the lockdown. This could reactivate the epidemic. (In specific area’s (regions within countries) the virus is resurrecting and regional lockdowns are the governmental response.) The start of the epidemic is less noticeable in a cumulative graph than in a daily graph. Due to daily fluctuations, the data in Figure 3 is averaged over several days.


Figure 3. Daily mortality rates for 16 European countries + 3.
Moving average over 3 to 5 (and 7 if missing today) filtered for negative values and extreme high values (often data corrections). Country codes are explained in Table 1.

Figure 3A. Zooms in on the most recent dates of Figure 3.

John Jacobs & Gijs van Loef
hartblik.weebly.com corona dashboard

 

Dutch version, including remarks from healthcare experts: Corona Dashboard Dutch version EW16/W28

CORONA DASHBOARD EW16/W28

Laatste update op 5 augustus – Dit document over de eerste golf is afgesloten.

actueel overzicht van Europa> Economist Tracking the corona virus

Reacties deskundigen

11 juni 2020 – Arnold Bosman (epidemioloog, adviseur WHO): “Supergoed! Het is erg waardevol.”
2 juni 2020 – Ernst Kuipers (CEO Erasmus MC): “Ik zal de website met veel belangstelling in detail bekijken, goed om dit soort analyses te doen en gegevens uit de vele bronnen te destilleren.”
2 juni 2020 – Huib Schut (Business development manager, Anesthesioloog): “Okay Gijs, dit geeft inzicht. In het begin was ik nogal kritisch op je cijferwerk maar gaandeweg is het verbeterd en inmiddels op een niveau waarmee beleidsmakers aan de slag kunnen. Ik ben alleen bang dat dit niet zal gebeuren in Nederland. Getuige ook jouw cijferwerk hebben we te maken met een klinische tweedelijns tunnelvisie. De gevolgen zijn desastreus en zullen dat blijven wanneer er geen openheid komt. De huidige beleidsconstellatie van OMT, RIVM, Kabinet is volstrekt incapable gebleken. Behalve in het verkopen van het wanbeleid: Rutte’s VVD doet het beter dan ooit.”
13 mei 2020 – Fred van Eenenaam (Prof. VBHC Center Europe/Harvard Business School Executive Education): “Het klopt met mijn beeld en van mijn collega’s die echt niet met Nederland bezig zijn. Hun beeld is ook dat Nederland middelmatig of onder gemiddeld (meer vanuit een wereldblik) presteert. Het is waanzinnig moeilijk Nederlandse cijfers of logica’s te vinden. Vanuit de gekozen aanpak is het helder dat gezondheidsmedewerkers grote schade ondervinden (electieve zorg, verzorgingshuizen, thuiszorg). Cijfers zijn moeilijk te vinden, dus dank! Ik cross check waar mogelijk.”
12 mei 2020 – Richard Janssen (Prof. in Governance & Management HCO’s Erasmus): ‘Like’ (twitter)
6 mei 2020 – Jaap van den Heuvel (Prof. Healthcare management UvA en CEO RKZ Beverwijk): “Het dashboard vind ik erg goed. Er is zeker nu grote behoefte aan betrouwbare en goede informatie.”
27 april 2020 – afsluiting twitterdebatje met Xander Koolman (zorgeconoom, associate professor): “Prima, en veel succes. En wellicht kun je een kolom oversterfte toevoegen. Zie ook berekeningen van de Financial Times.”
26 april 2020 – Matthijs Dekker (Praktijkhoudend huisarts): “Prachtig inzicht gevend dashbord! Complimenten. Ik zou willen opmerken dat je bevindingen mooi aansluiten op je eerdere artikelen die al eerder aangeven dat de zorg in Nederland juist níét tot de beste behoort. Uit de media in het algemeen komt het beeld naar voren dat wij het allemaal erg goed doen met de intelligente lockdown ect. Je zou dat feit op zich nog wel wat kunnen uitvergroten denk ik als onafhankelijke expert.”

——————————————————————————————————————————————————–

auteurs: John Jacobs en Gijs van Loef


5 aug. – update data 4 aug. 2020

Op 18 april 2020 lanceerde het Platform Betrouwbare Zorgcijfers het CORONA DASHBOARD LANDEN EW16 met een dagelijkse update. Het vervolg op de CORONA SCENARIO ANALYSE: CORONA SCENARIO ANALYSE d.d. 14 maart 2020. Op 25 mei 2020 presenteerden we een nieuwe versie met een nadere duiding van de verschillen tussen landen en nieuwe grafieken.

In de landelijke media ontbreekt een deugdelijke vergelijking met enige diepgang van de ‘coronaprestaties’ van Nederland in vergelijking met andere landen waaraan wij ons doorgaans spiegelen. De EW16 (‘Europa West 16’) zijn de 16 ‘moderne’ Europese landen met een minimale bevolkingsomvang van 4 miljoen inwoners. Deze landen zijn goed vergelijkbaar, ze hebben een gedeelde politiek-democratische, sociaal-economische en technologische ontwikkeling doorgemaakt, waardoor de vergelijkbaarheid toeneemt. Het betreft de landen België, Denemarken, Duitsland, Engeland (UK), Ierland, Frankrijk, Finland, Griekenland (geen ‘West’, maar toegevoegd vanwege haar outperformance), Italië, Nederland, Noorwegen, Oostenrijk, Portugal, Spanje, Zweden en Zwitserland. We voegen verder Japan, Zuid-Korea en de USA als referentielanden toe. De data zijn ontleend aan: worldometers.info coronavirus #countries

Tabel 1 ‘Kerncijfers‘ (EW16+3)

NB: Vier landen weten niet hoeveel mensen hersteld zijn van ziekte. Dat betekent dat in deze landen cruciale cijfers ontbreken die nodig zijn voor goede bestrijding van de epidemie.

Sterftecijfers per miljoen inwoners zijn een goede manier om landen te vergelijken. De grootste verschillen tussen landen worden veroorzaakt door verschillend beleid, al dan niet veroorzaakt door de mate waarin een land overvallen werd door de epidemie. Om tot betrouwbare sterftecijfers te komen maken we twee correcties:
1) Het tellen van COVID-19 doden gebeurt anders in verschillende landen. De GGD maakte in het begin van de epidemie bekend dat het RIVM niet alle gevallen telt, en dat Nederland een onderrapportage kent.[1] Nederland telt doden in verpleeghuizen nauwelijks mee, doordat deze mensen niet worden getest, zelfs niet als symptomen van COVID0-19 hebben, en niet-geteste mensen sterven volgens de statistieken niet aan COVID-19. Deze gegevens kunnen worden gecorrigeerd voor de oversterfte. Omdat gegevens over oversterfte pas na drie weken bekend worden, wordt een vaste correctiefactor gehanteerd.[2]
2) Niet ieder land heeft dezelfde bevolkingsopbouw. Sommige landen hebben een oude bevolking en oude mensen sterven relatief vaak door COVID-19. Ook daarvoor kan worden gecorrigeerd.

Op grond van deze correcties voor onderrapportage en de bevolkingsopbouw kan een ranglijst worden gemaakt van donkerrood naar donkergroen. Met dit nieuwe dashboard 2.0 hebben we aan de EW16+3 negen landen toegevoegd met een (zeer) lage sterfte, waaronder vier Oost-Europese landen, Canada, Israel, Australie en Nieuw Zeeland, Taiwan. Alle landen tezamen vormen de W28.

De indeling is (de kleuren staan ook in Tabel 1):
•   Diep donkerrood: > 1000 doden per miljoen inwoners (>1000 doden/M) – Verenigd Koninkrijk
•   Donkerrood: 500-1000 doden/M – België, Italië, Spanje, Nederland, USA, Zweden
•   Rood: 200-500 doden/M – Frankrijk, Ierland, Zwitserland, Portugal, Canada
•   Lichtbruin: 100-200 doden/M – Oostenrijk, Denemarken, Duitsland
•   OranjeGeel : 50-100 doden/M – Finland, Noorwegen, Israël
   Lichtgroen: 20-50 doden/M – Estland, , Tsjechië, Polen, Litouwen
•   Heldergroen: 10-20 doden/M – Griekenland, Australië
•   Donkergroen: <10 doden/M – Zuid-Korea, Japan, Nieuw-Zeeland, Taiwan.

Tabel 2 Overzicht van sterfte per miljoen inwoners – W28 (aangepaste ruwe data, gecorrigeerd voor onderrapportage en leeftijd – bronnen onder) Met ISO landencodes


NB # moeten doortellen naar 28

Opvallend is dat de goed presterende landen allemaal in Zuidoost-Azië liggen, waar 18 jaar geleden de SARS-1 epidemie begon in China. Veel landen in die regio hebben daarvan geleerd en zich voorbereid op een nieuwe epidemie.[3] De epidemie van een virus moet anders worden bestreden dan die van een bacterie. De standaard strategie tegen virusepidemieën is testen, proactief opsporen en isoleren van besmette gevallen.[4] Het effect is dubbel: minder doden door de ziekte en minder sociale economische schade doordat alleen besmette gevallen geïsoleerd worden. Niet voor niets is dit ook de aanpak in de diergeneeskunde.[5]

Het epidemiebeleid van de Europese en Noord-Amerikaanse landen steekt schril af bij het beleid in het Verre Oosten:
– De sterfte is hoger, soms wel 100 keer hoger dan in de Zuidoost-Aziatische en Australische landen.
– De impact op het sociale welzijn en de economie is in Europa en Noord-Amerika veel groter.
– De verschillen binnen Europa zijn echter ook groot als Griekenland en Litouwen worden vergeleken met het Verenigd Koninkrijk en België.

Het is belangrijk om te leren van deze epidemie.
1. Het is nog erg onzeker is of we snel een goed en veilig vaccin krijgen. Vaccins stimuleren de afweer, maar bij COVID-19 overlijden patiënten door de immuunreactie tegen het virus. Mogelijk zijn antistoffen de boosdoener.[6] Aangezien in de meeste Europese landen slechts ongeveer 5% van de mensen besmet is geweest, kan de epidemie nog lang en heftig worden.[7] Het is van het grootste belang om zoveel mogelijk en doorlopend te blijven leren.
2. Net zoals deze epidemie al decennia geleden voorspeld werd, is het een historische zekerheid dat we een nieuwe RNA-virus epidemie gaan krijgen, na AIDS, SARS-1, MERS, Ebola en SARS-2.
3. Het beleid dat wij voeren heeft grote impact op het gedrag van mensen en daarmee op de epidemie.[8] Dan kunnen we de volgende keer beter voorbereid zijn, zodat dan ook onze impact lijkt op die in Zuidoost-Azië en Australië.[9]

Grafiek 1 COVID-19 Sterfte per land vanaf 3 casus/1 miljoen inwoners

De 16 Europese landen kennen grote verschillen in hun rapportage van de sterfte. Opvallend is dat de epidemie in Spanje eerder hoog wordt dan in andere Europese landen, zoals Italië. In België groeit de epidemie langer door. Bij Zweden ziet u een unieke trapsgewijze verhoging in de bovenste grafiek. Onderste grafiek logaritmische schaal.



Tabel 3 Sterfte/Casus

De sterfte per casus laat het overlijdensrisico per land zien bij de gedocumenteerde besmettingen. De correctie met de leeftijdsfactor is gemaakt omdat ouderen meer kans op overlijden hebben dan jongeren en omdat de bevolkingsopbouw verschillend is tussen landen.
De ‘Leeftijdsfactor’ is de verwachte sterftecijfers in een land, vergeleken met het EU gemiddelde, gecorrigeerd voor verschil in leeftijdsopbouw.[10]


Grafiek 2 Actuele status epidemie (data 22/7; NB: wijziging opmaak legenda)

De actuele status van de epidemie in een land kan worden afgelezen in Grafiek 2. Hier staat het voortschrijdend gemiddelde van de sterfte/miljoen over 7 dagen waarbij de data-correcties zijn uitgefilterd. Opvallend is de vroege piek van Spanje en de hoge van België (buiten beeld tot max 29/ miljoen). De Europese landen hebben de aspecifieke lockdown van de samenleving inmiddels achter de rug. In enkele maanden is de is epidemie afgenomen tot lage waarden – niet tot bijna 0 zoals in Zuidoost-Azië en Australië! Dit duurde wat langer in landen die een hoge piek hebben gehad, zoals bij België. Enkele landen hebben nog aanzienlijke aantallen nieuwe sterftegevallen (2-5/M): Zweden, Verenigd Koninkrijk en VS.

Het risico is dan dat de epidemie weer gaat opleven. De start van de epidemie valt minder op in een cumulatieve grafiek, dan in een dagelijkse grafiek. Grafiek 2A zoomt in op de laatste 2,5 week op een kleinere Y-as.



`

Relatie tussen Sterfte en Testen 

Onderscheid maken op grond van symptomen is geen goede strategie om te discrimineren tussen besmette en niet besmette mensen. Veel mensen met griepachtige symptomen hebben geen COVID-19 en zeker de helft die door SARS-2 geïnfecteerd is, heeft of krijgt geen symptomen. Mensen die echt ziek zijn van COVID-19 komen meestal niet meer veel buitenshuis en zullen daarom weinig anderen besmetten, maar ook mensen die zich gezond voelen kunnen andere mensen besmetten. Geïnfecteerde mensen zijn besmettelijk met hoge virustiters voordat ze ziek worden en niet iedereen krijgt ooit daadwerkelijk (specifieke) symptomen. De symptomen worden mogelijk, net als bij andere luchtweg RNA virussen, vooral veroorzaakt door de afweerreactie tegen het virus en minder door het virus. Het hoge aantal coronazieken in Nederland komt onder andere doordat veel geïnfecteerde mensen bleven werken en dit gebeurde veel in de zorg
Proactief testen (actief testbeleid) betekent dat begonnen wordt met het testen van iedereen die symptomen heeft die lijken op COVID-19. Doel is te bepalen of ze geïnfecteerd zijn met SARS-2 of niet. Vervolgens worden alle contacten getest van wie positief getest is; wie negatief getest is, wordt 1 en 2 weken later hertest omdat tijdens de incubatietijd virustiters extreem laag kunnen zijn. Alle mensen die besmet moeten minimaal twee weken in isolatie blijven en/of een week tot nadat ze klachtenvrij zijn – bv in eigen huis of in speciale hotels. In Wuhan werden de boodschappen van deze mensen thuisbezorgd, om te voorkomen dat mensen de straat op zouden moeten gaan.
Bij een actief testbeleid zullen veel mensen worden getest die niet besmet zijn, omdat de besmettingsgraad in de bevolking meestal (veel) lager is dan 2%. Een reactief testbeleid, waar Nederland en andere Europese landen naartoe zijn geswitcht in de eerste weken van de epidemie, leidt tot een veel hoger aantal besmettingen per test. Het gevaar van niet-actief testen is dat veel geïnfecteerde mensen niet bekend zijn. Nederland blijft hiermee achterlopen (grafiek; NB Zweden en Frankrijk ontbreken van de EW16).

Wereldwijd wordt geschat dat de helft van de besmettingen gebeurt door mensen zonder symptomen. Die besmettingen vinden vooral plaats in landen die weinig testen, omdat iemand zonder symptomen en zonder testresultaat geen enkele reden heeft om in quarantaine te gaan of te blijven. Figuur 3 laat de statistische relatie zien tussen het maximum percentage positieve testen in een land en het ongecorrigeerde sterftecijfer door COVID-19.

Figuur 3 Mortality per 1 million versus Maximum number Pos.Tests

De vorm komt overeen met het continent van een land (cirkel Europa (EW-16) , vierkant overige Europa, kruis Noord-Amerika, driehoek: Australië, ruit: Zuidoost-Azië). Duidelijke correlatie: de lineaire correlatie tussen veel testen en lage sterfte is sterk: R²=0,64. Een laag maximum percentage positieve testen impliceert dat een land uitgebreid pro-actief test, en niet alleen de evidente casussen.

Voetnoten

[1] hartblik.nl Addendum GGD correctie op RIVM
[2] hartblik.nl Betere bestrijding van de epidemie – strategieen
[3] hartblik.nl Voorkom epidemie
[4] hartblik.nl Bestrijding Covid-19
[5] hartblik.nl Betere bestrijding van de epidemie
[6] hartblik.nl Foute afweer
[7] hartblik.nl Betere bestrijding van de epidemie
[8] hartblik.nl Cijfers en data
[9] hartblik.nl Verloren door te weinig kennis
[10] Populationpyramid

Corona Dashboard EW16/W28 English version
—————————————————————————————————————————————————-

Bronnen onderapportage

The Economist (13 juni 2020) – Unrecorded COVID-19 Deaths

Economist tracking covid-19 excess deaths
Many Covid deaths unrecorded

Financial Times:FT
Washington Post:Washington Post

Overige bronnen

New York Times – Coronavirus Map NYTimes world corona map
The Guardian – Coronavirus cases and deaths over time: how countries compare around the world TheGuardian Datablog

—————————————————————————————————————————————————-

De leden van het Platform Betrouwbare Zorgcijfers

Achtergrond leden Platform 23062020

—————————————————————————————————————————————————
Overige links Dashboard Rijksoverheid